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A formulation of field emission from a spherical tip is developed in terms of scattering the-
ory. Itis shown that in three dimensions the usual “transmission coefficient” is replaced by
a differential scattering probability. The statistical average over the Fermi distribution is
obiained without recourse to the usual kinetic arguments, which are shown to lack general
validity., The zero-order problem is taken to be emission from a spherical well through a
Coulomb barrier. This problem is solved exactly. The energy distribution of the field-
emitted electrons is calculated for this model and found to be always larger than that calculated
for the one-dimensional triangular barrier. In a second publication, more realistic models

are analyzed in terms of a distorted-wave Born approximation which utilizes the solutions
of the present problem.

I. INTRODUCTION
Recent work in field emission has stressed the

these effects are observable. Quantitative com-
parisons between theory and experiment are dif-

observation and understanding of band-structure
effects in the energy distributions of emitted elec-
trons. This work is motivated by a desire to re-
late the observed distributions to the band struc-
ture of the emitting crystal. One impediment to
an understanding of band-structure effects is that
the only relevant experiment is field emission
from fine needles or tips, while all of the theory
has been developed for field emission from planar
surfaces. Nevertheless, present indications from
both theory and experiment are that band-structure
effects dc play a part in field emission, and that

ficult to justify owing to the planar geometry used
in the theory. In this paper, a three-dimensional
theory of field emission is developed to account
for more realistic emitter shapes. However, no
attempt is made to account for the band structure
of the emitter. We can assert, therefore, that
differences between the present three-dimensional
theory and experiment are probably due to band-
structure effects alone, and are less likely to be
attributable to the niive geometry of the theory.
Conversely, it is not valid to assume that anoma-
lies in field-emission data are due to band-struc-
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ture effects unless all possible three-dimensional
effects have been accounted for.

The most notable attempts to account for band
structure in field emission were made by Its-
kovich!~® and Stratton.* Both of these authors
consider field emission from a plane. Iskovich
uses the actual Bloch functions inside the crystal,
and the WKB transmission coefficient, to compute
the emitted-energy distributions. He predicts
angular variations of the energy distributions due
to nonuniform emission from different portions
of the constant-energy surfaces. Stratton uses
the effective-mass approximation and the WKB
transmission coefficient in his theory. His results
depend upon cross sections of the constant-energy
surfaces normal to the emission direction. This
yields energy distributions which vary with the
crystallographic orientation of the emitting sur-
face. Swanson and Crouser®™" detected anomalies
in the energy distributions of tungsten and molyb-
denum from particular crystal facets. They re-
late these anomalies to the topology of the con-
stant-energy surfaces by means of Stratton’s
theory. Nagy and Cutler® show by calculation that
Stratton’s theory can qualitatively explain Swanson
and Crouser’s results. Because the anomalies
do not appear on all crystal facets, it is unlikely
that three-dimensional effects can account for
them. This indicates that band-structure effects
can indeed affect field emission. On the other
hand, Whitcutt and Blott® measure large angular
variations in the energy distributions of electrons
field-emitted from copper deposited on tungsten.
They maintain that these variations are conse-
quences of the band structure of copper as shown
by Itskovich’s theory. This is unlikely because
the implication of their paper is that the copper
was deposited as a monolayer, and thin layers of a
substance will probably not exhibit the band struc-
ture of the bulk,

In this paper, the emission tip is repre -
sented by a spherical well of constant potential
in the region ¥=0to r=a. A Coulomb barrier is
assumed in the region r=a to =%, The Hamilto-
nian isthen similar to that used in the study of a-
particle decay, and is solved exactly without re-
course to the WKB approximation., Field emission
in this model is shown to be a scattering problem
and is so treated. The invalidity of kinetic argu-
ments in calculating incident particle flux for other
than free particles in momentum eigenstates is
demonstrated. The last point is of particular rele-
vance in the three-dimensional treatment. The
spherical geometry which is used precludes a con-
venient momentum-eigenstate representation, and
the fluxes must be computed quantum mechanically.
A consequence of the scattering formalism is that
the familiar “transmission coefficient” is inade-
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quate for the description of tunneling probabilities.
1t is superceded by the “differential scattering
probability, ” the analog of the differential scatter-
ing cross section in ordinary scattering theory.
The solutions to the above unperturbed Hamiltonian
are used, in a second paper, as a basis for a
perturbative treatment of more exact tunneling
Hamiltonians.

II. ZERO-ORDER MODEL

We assume that the emission tip is a sphere.
In the zero-order model, we consider tunneling in
the one-electron potential

=-W, r<a
=V,(a/r-1), R>v>a . (2.1)
Here
V,=V,(1-a/R)?, (2.2)

and V, is the potential applied between a spherical
collector at »= R>> a and the surface of the tip at
r=a. Since R> a, the potential about the tip is
almost the same as for a collector at infinity. The
field at the tip surface is

FOZVa/a (2~3)

The Schrodinger equation with the potential de-
fined by Eq. (2.1) is separable in spherical co-
ordinates, and the radial equation is'’

Yy + @(E+W)—lg;;1—)> Y;=0, v<a
(2.4)

Here a=0, 26248 for lengths in f\, energies in eV,
fields in eV/A, ¢ in C, 7 in eV sec, and 7#/m in
A%/sec. The Hamiltonian is virtually identical to
that of an a particle tunneling out of a spherical
nuclear well. The solutions of the angular equa-
tions are the spherical harmonics Y7 :

172
PE)= (o [ B ] g ggpcime,

o<mz<l. (2. 5)

Here, P7 is the associated Legendre function, and
Y;'™! is defined by

Y™ (9= (= D!y (7). (2.6)

The spherical harmonics form an orthonormal set

on the unit sphere, i.e.,
J Y)Y (7)dR = 6Dy« 2.7)

We may now solve Eq. (2.4) in the two regions
r<aand 7> a.
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(a) For »<a, possible solutions of the radial equa-
tion are!®:
(i) spherical Bessel functions,

G (k) = (‘”/Zk'i’)l/z J1+1/z(k7') ’ (2.8)

(ii) spherical Hankel functions of the first and
second kind, 2

B kv) = (n/2k7) 2 HY) ,5(k7) (= outgoing wave),
(2.9)
B kr) = (n/2k7)'% H\%, ,5(k7) (= incoming wave),
wheré
= a(E+W).

The spherical Bessel functions do not carry any
flux, and hence are not suitable for a barrier pene-
tration problem. The spherical Hankel functions
do represent outgoing and incoming waves, but
these are singular at the origin. This singularity
violates the condition of regularity at the origin
which one normally imposes on solutions of the
radial equation. Therefore, neither of the solu-
tions (i) or (ii) appears to be a completely accept-
able eigenfunction for the interior problem.

The resolution of this difficulty is not apparent
in the case of o decay but may be achieved for
field emission. In the statement of the present
problem an essential element of the field electron
microscope has been omitted from consideration
— the wire connecting the tip through a potential
source to the collector. That is, there is actually
a source of, and sink for, electrons at the origin.
Such singular sources and sinks may be handled
by adding the physical stipulation that the flux of
particles through a bounding surface about the
singular source or sink remain finite in the limit
as the bounding surface shrinks to zero. This is
analogous to the manner in which point charges
are handled in electrostatics.

In the following we make the physical assumption
of such a 6-function source and sink at the origin.
It is easy to verify that the total flux carried by
h(,*’ waves through a bounding sphere is constant
regardless of the sphere’s radius, and that, there-
fore, the set z{*’ is an acceptable solution to the
interior radial equation.

(b) The solutions of Eq. (2.4) for » >a are the
Coulomb wave functions G,(n, K7) and F,(n, K7),
where

Ke=a(E+V,)
and
n =aV,a/2K.

(2.10)

(2.11)

These functions are discussed in Messiah. A suit-
able combination of the F,; and G, which represents
an asymptotically outgoing (+), or incoming (=),
wave is

C\® = (G, +iF,)/Kr. (2.12)
Thus

=Y LAY (kr)+ R (RY)], 7<a  (2.13)

Y=Y T,C;"” (K7), r>a  (2.14)

where I;, R;, and T, are the incident, reflected,
and transmitted wave amplitudes.

IIl. MATCHING CONDITIONS

T, and R, in Egs. (2.13) and (2. 14) are deter-
mined by demanding that  and 3(/) be continuous
at the boundary »=a. Since the angular solutions
are the same inside and outside the sphere, the
matching conditions become

I, (v Ry, (. .

—-’-Tlhﬁ )+—LT,h§ =y, (3.1)
Ly By K oGy ,
Tlhl +Tlh’l - kcl ’ (3-1)

where all functions are evaluated at »=a, and the
prime denotes differentiation with respect to the
argument, i.e.,

’ 9

=2 h(:t)
kv or %

=2 forci¥
8Kvr
In the energy range of interest, the NBS asymp-
totic forms for 4}~ and C{” may be used to solve
Egs. (3.1). These asymptotic forms are valid

when
1/ka<<1 for n{”

and

<1 for Ci¥.

Ka-2n
2n
In our case,

1/ka=~ 2a”(E + W)™/2

and

~10-2 -3
o o ~107%-107,

a

Ka—Zn’_ -E

where a was taken to be 500 A, E~% W~5 eV. Thus
the use of the asymptotic forms is justified. After
considerable algebraic work, we obtain

_TJ_~2['E ]”2[—E/(E+W)]1’z—i _YL)IM
I, “lLE+w 1-E/(E+W) (—E

X 2 1/2 .
% gita exp<_§%0__ (=E)P2) (=i)!

(3.2)

and
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R, _

R, AL+ = B/(E+ WY e i
1

1=E/E+W) (3.3)

For later use we set I;=1 and define the /-indepen-
dent quantities 7 and R:

T=T,(i)?,
R= R,(—)l .

(3.4)
(3.5)

IV. FIELD EMISSION AS A SCATTERING PROBLEM:
“DIFFERENTIAL SCATTERING PROBABILITY”

In one-dimensional problems the transmission
coefficient is the ratio of the transmitted flux to
the incident flux. For one-dimensional problems
the “transmission coefficient” is well defined be-
cause the transmitted current is uniform over any
plane parallel to the emission plane, and conserva-
tion of current implies that the current is position
independent in the outside region. For the wave
functions in Sec. II, however, the current is a
function of both angle and radius. Further, the
quantity of interest is the “differential scattering
probability, ” i. e., the probability that a given
incident particle will be detected at position T.
This is more detailed information than the mere
knowledge of the probability that the particle will
penetrate the barrier. This point is clarified by
comparing our problem to a scattering experiment
involving a planar beam of particles incident on a
target. The transmission coefficient is analogous
to the total cross section, that is, the probability
that particles in the incident beam get scattered
at all. On the other hand, the differential scatter-
ing probability is analogous to the differential scat-
tering cross section, which is a measure of the
probability that particles are scattered into a par-
ticular differential solid angle. In our problem,
the electrons incident on the barrier from the in-
side are represented by spherical waves which
carry both radial and angular momenta. The trans-
mitted electrons are distributed nonuniformly
throughout the space external to the sphere. In
order to characterize these electrons we require
the analog of the differential scattering cross
section of ordinary scattering theory.

Consider a solid angle Q intercepting an area S’
on the tip and an area S on a sphere of radius 7.
Here S is to represent the apertuze of a detector
which registers all particles striking it. Not all
particles that are incident at S’ will reach S be-
cause the barrier may scatter some of these par-
ticles out of . Conversely, particles striking
the barrier at somearea other than S’ may subsequent -
ly get scattered by the barrier into 2, and these may
reachS. Infact, onlythose particles which maintain
zero angular momentum will pass through both S
and $’. In order to account for all of the above
possibilities we introduce the scattering prob-
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ability o (%, 1, m)that a particle with quantum
numbers (&, I, m) is detected at-S. This probability
is the ratio of the current of such particles cross-
ing S to the current of such particles incident on
the entire barrier.

With ?IT the expectation value of the current opera-
tor for the transmitted wave, and J 1 the same quan-
tity for the incident wave, the current of particles
crossing S is

rzfs?rT-%dsz, (4.1)
while the incident current at the barrier is
[ 3 -d&. (4.2)

The integral in Eq. (4.2) is over the surface of the
entire tip. We now define

o=v?f Jp-7dQ/ [ T - d&
and differentiating the right-hand side with respect
to @, we obtain the differential scattering pro-
bability

do _ 7"231' . ;’

e~ [3,+-dA

Using Egs. (2.13) and (2. 14) the differential

scattering probability reduces to

do 2 omeom
ES_Z= _YI*YI'

(4.3)

(4.4)

T,

2 (4.5)

K

We now define the total transmission probability
o7(k, 1, m) to be the probability that the (%, I, m)
particle will be detected any place at all outside of
the tip, i.e.,

do
or(k, 1, m)=/a?z as,
where the integral is over a sphere of radius »>a.

Using Eq. (2.7),

(4.6)

i (4.7)

LIk
I | K

0‘T(ky l: WL) =

Therefore we can rewrite Eq. (4.5) as
do N ~

ol oY (NY(P).

Finally, substituting Eqs. (3.2) and (4.7) into Eq.
(4. 8) we obtain

do 4 -E(E+ W)]”ae
a w

(4.8)

172
D (-% —‘;0 (- E)3’2> ymym,

(4.9)

This shows that o(k, I, m) is only a function of the
energy, i.e., of k. Thus o, appears to be equiva-
lent to the transmission coefficient of one-di-
mensional problems.

It must be pointed out that in general o4 (%, I, m),
the probability that the particle may be found any-
where at all outside, is not completely equivalent
to the ordinary one-dimensional transmission co-
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efficient. The reason for this is that or could in
principle exhibit a dependence on the quantum num-
bers (I, m). It is accidental that in our example
this dependence drops out. The one-dimensional
transmission coefficient therefore may not be com-
pared directly with o5 but only to its average over
the quantum numbers (I, m). In the following, com-
parisons are made between the three-dimensional
and one-dimensional energy distributions rather
than between o, and the one-dimensional trans-
mission coefficient. This is done because the en-
ergy distribution is a physical observable, while
o or the one-dimensional transmission coefficient
must be inferred from the experimental data.

V. STATISTICS AND MONOCHROMATIC
SUPPLY FUNCTION

We must now relate the differential scattering
probability to experimentally observable detector
currents. This requires an enumeration of the
internal states of the spherical tip and a definition
of the averaging procedure over these states. The
states that were chosen to compute the differential
scattering probability represent traveling waves
and are not localized in the tip. This makes them
awkward to use in a discussion of the statistics.
We will therefore compute the detected current in
a manner similar to that used in one-dimensional
problems. For the moment we assume the exis-
tence of adetector capable of discriminating the
partial monochromatic current of particles all
having the same quantum numbers (%, I, m).

From Eq. (4.4), the detected radial component
of the electric current density J(&, I, m,T) of par-
ticles with quantum numbers (&, I, m) at the posi-
tion T is

J(k, 1, m, T) =+ql(?l m) Z—?z (&, 1, m, 7), (5.1)
where ¢ is the electron charge and I(, I, m) is the
radial component of the total particle current of
(B, 1, m) particles incident at the barrier. Possible
deviations of the electronic distribution in the tip
due to transport effects will be neglected and
I(k, 1, m) will be computed for the thermal equilib-
rium distribution in the tip.

In one-dimensional problems it has been the
practice'®'* to compute incident fluxes on the basis
of “kinetic arguments.” In effect, these arguments
use the classical expression

->

J=pv, (5.2)

instead of the quantum-mechanical current density.
(Here J is the current density, p is the density of
particles, and ¥ is their velocity.) In plane-wave
states it is clear that

p=yPP* = const.

Because the plane waves are momentum eigen-

5.3)

states, the quantum-mechanical flux is then the
same as that given by Eq. (5. 2) with suitable nor-
malization. When ¥* is not constant and we do
not have momentum eigenstates, the classical ex-
pression fails to represent the quantum-mechanical
expression for the flux and is therefore incorrect.
In light of this, the kinetic argument must be
abandoned in favor of a purely quantum-mechanical
expression for the flux.

To proceed with the calculation of I(%, I, m), the
internal states of the tip in the absence of an emit-
ted current must be investigated. In contrast with
the development in Sec. II, now there are no elec-
tron sources or sinks, and the spherical Hankel
functions are no longer acceptable eigenstates.

The free-particle eigenstates can only be

Y= th]'z(k’i’)-

Further, %k must be quantized by applying appro-
priate boundary conditions on the solutions given
by Eq. (5.4). We assert that at v=a

d)(a) = 0, (5- 5)

which corresponds to putting an impenetrable wall
at the tip boundary. The quantization condition
for % is therefore

(5.4)

(5.6)

where j;./2,, is the nth root of the ith Bessel func-
tion. Thus, the wave functions, which are ortho-
normalized in the volume of the tip, become

, 1/2
= 4.71+1/2.n >
5 :
Jrs2(5)1:/2,m

k=jiaza/a, n=1,2,...

(
lpnlm —\17(1

XYY i [Fr sz, 7/al}. (5.7)
As was previously noted, the states ¥, repre-
sent standing waves and carry no current. Alter-
natively,these states may be viewed as transporting
equal and opposite fluxes in the directions +7and
—~7, the net flux being zero. We adopt the latter
viewpoint to calculate the flux incident on the bar-
rier in the + 7 direction. Using the decomposition

j= 5+ ny7), (5.8)
the incident flux at position & on the tip is
nY™ @)Y} (@) (5.9)

4 12 . .
mona dyas2(jr a2,

The incident current is then the integral of Eq.
(5. 9) over the surface of the tip. Using Eq. (2.7),
the incident current per particle is
3
moma’d} o s2(raszn)

(5. 10)

The total incident particle current I(n, I, m) is the
incident current per particle, Eq. (5.10), times
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the number of (%,l,m) particles inthe volume of
the tip. The latter quantity is the number of

(n, I, m) states in the volume (two for particles of
spin one-half) times the probability of occupancy
of the state [the Fermi-Dirac distribution f(E, ,)].
Thus,

Zﬁf(En.l)

- . 5.11)
me"azJﬁllz(]hl/z,n) (

I(n, 1, m)=

Finally, substituting Eq. (5.11) and Eq. (4.8) into
Eq. (5.1), the detected electric current density of
(n, 1, m) particles is
- g f(B, oy (B, DY (MY ](H)

e *a’ 1% 12( 11 s2,m)

J(n, 1, m)
(5.12)

V1. ENERGY DISTRIBUTION

Equation (5. 12) is unsatisfactory from an experi-
mental viewpoint because there is no detector ca-
pable of discriminating particles with different
quantum numbers (x, I, m). An expression for the
current due to all electrons with energies between
E and E + AE is required. Because of the axial
symmetry of the problem, the energy is not a func-
tion of the quantum number m. The current den-
sity of all (n, I) particles may therefore be obtained
by summing Eq. (5.12) over all —I<m<I. From
the identity

msl ” A 20+1
2 Y,'”*(v)Y,'"(fr)=—“— , (6.1)
m=-1 4”
we obtain
Jin, 1) _nqf(E, )or(E, )(21+1) 6.2)

" 2m 2T (e
In principle, the current due to all electrons

with energies between E and E + AE may be obtained
by performing the sum

AJ(E)=23J(n, 1), (6.3)
nyl

where »n and [ range over the region of n-l space
between the curves E =const and E + AE = const.
If AE<<1, this may be written
PYE)AE=2 J(n, 1),
n,1

where P}= AJ/AE is the energy distribution for
the zero-order three~-dimensional Hamiltonian,
Using NBS (9.2.1) and (9.2.11), and Eq. (5. 6),
we obtain

Ii%s2(G1as2,2) = 2/ Tka,

(6.4)

(6.5)

which is valid for

lim jl +1/2yn ©
I=const, n=x

In practice Eq. (6.5) is satisfied for all but the
first few zeros of J;,,2. Therefore,
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ME (21+1). (6.6)

O(F) =
PsE) == fnr2anE ot

We now observe that the number of electrons per
unit volume in the sphere with energies between
E and E + AE is

_3f(E)
ps(E)AE—W%ll (21+1). (6.7)
The analogous quantity for a cube is
p(E)AE = af (E)e AE/ 272, (6.8)

For a free-electron gas, in a macroscopic volume,
the Fermi energy is only a function of the total
electron density. For a cube and a sphere of the
same material at 0°K, this density is

- -E
[EF p(E)dE= [T py(E) dE . (6.9)
Since Ey is arbitrary, we conclude that
pe(E) = py(E) . (6. 10)

Finally, using Egs. (6.10), (6.6)—(6.8), and
substituting for o4 the right side of Eq. (4.7), we

obtain

niga?(a/7*f(E) - E(E + W)*]''*

3m,mW

PY(E)=

__4a1/2(_ E)3/2 )
X exp (—31?;—— . (6.11)

Numerically,

—-E(E+W)?

2
pg(E)nA—V =4,32x10%® (%) fE) 7

Af-e
y (—0.6831(—E)3’2>
exp —~——————F0 .

(6.12)

VII. COMPARISON OF ZERO-ORDER THREE-DIMENSIONAL
AND ONE-DIMENSIONAL ENERGY DISTRIBUTIONS

The simple triangular barrier is chosen for com-
parison with the spherical Coulomb barrier. The

transmission coefficient for the triangular barrier

islS

/
[-e(e+W)] Zexp <—% M) , (1.1)

D=
Fo

SIES

where

€=E~(ik)¥/2m,, (7.2)

and %, is the transverse k vector. Using Young’s
analysis'® and Eq. (7.1), the energy distribution
for the triangular barrier is

o_16Tm,q E _
=100t i) [ [ etes )

4 oM2psie(_ 3/2
x%exp(—§a W =e/W) de .

F, (7.3)
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Since the quantity
4 qlleyple
Y*37F,
the integral in Eq. (7.2) may be approximately

evaluated, and we obtain

F
P~ —rile S0 (B + W) A(E)

>1,

T
4 qtf? 3/2)

Xexp <_§_F0 (=EPZ) . (7.4)

Evaluating all numerical constants we have

A F,
P(l) m ~6, 32X IO'GWQ (E+ W)“af(E)
- 0.6831(- E)3/2
X exp (.—3__(_2__> . (7. 5)
F,

For the energy ranges accessible to experiment,
the pre-exponential factors in P) and P{ are nearly
constant and the energy dependence of both distri-
butions is essentially exponential. Indeed, the
WKB approximation gives the same exponential en-
ergy dependence without the prefactors. Because
of the limited range of variability of the prefactors,
and the dominance of the exponential, we cannot
expect to discriminate between the distributions
P} and P} on the basis of a simple experiment. P
is compared with P{ in Fig. 1, at v=a and at 0°K.
Lt is seen that P is always greater than P in the

energy range of interest, Furthermore,
P} 0.68(E+WNW=E_
= . 6
7 T : (7.6)
which peaks at E= —§ W. Therefore,
PY<1.36(3 W)'2PY/F,. (7.7

PY and P? represent the two extreme geometrical
limits for the field emission problem. The dis-
placements between these distributions and their
different preexponential energy dependences are
direct consequences of three-dimensional effects.
P} is the energy distribution for a finite sphere of
radius a with a spherical collector of radius R.

P! is the energy distribution for an infinite plane

with a planar collector at a distance d from it. In
principle, P} may be obtained from P in the limit
a— o, R—», while R -a=d, and Fy=const., How-
ever, implicit in the present calculation for PJ is
the limit R~ < while a is bounded. Therefore, P}

may not be obtained from PJ, as given by Eq. (6.12),

by letting a tend to infinity subject to the above con-
straints. On the basis of the foregoing, it is ex~
pected that calculation of PJ in the intermediate
range a~ R- © would yield energy distributions
intermediate between P? and Pg in Eq. (6.12).

VIII. CONCLUSIONS

In this paper a completely three-dimensional
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FIG. 1. Comparison of the one- and three-dimensional
energy distributions at the emitting surface for a typical
value of the electric field. The cutoff at the Fermi
energy is not shown.

analysis of field emission has been achieved for the
first time. The Coulomb barrier was used for an
unperturbed model Hamiltonian. It was shown that
quantum-mechanical §-function particle sources
and sinks could be accommodated within the mathe-
matics, and the a-particle Hamiltonian was solved
exactly. The concept of the “differential scattering
probability” was introduced within the context of
scattering theory. The relationship of this notion
to the one-dimensional transmission coefficient
was discussed. It was demonstrated that the quan-
tum-mechanical expression for the flux must be
used in developing the statistical averaging, and
that the usual kinetic arguments have no general
validity. Finally, the energy distribution for the
Coulomb barrier was derived and compared with
the distribution predicted for a one-dimensional
triangular barrier. The comparison revealed that
both energy distributions contain the same expo-
nential energy dependence, with different pre-
exponential factors. It was therefore concluded that
the apparent success of one-dimensional treatments
is due to the fact that most experiments are insen-
sitive to the preexponential factors.

In a following publication, a perturbation theoretic
viewpoint is adopted to determine the effect of
image forces, patch fields, etc., on the energy
distribution. Specifically, the eigenfunctions of
the unperturbed Hamiltonian are used to construct
a Green’s function. This in turn is approximated
and used to solve the perturbed Hamiltonian., This
new method of treating tunneling problems leads
to the “integral equation for tunneling, ” in analogy
to the parallel development in scattering theory,



604 J.

which leads to the “integral equation for scattering.”

Using this formalism it is shown that the resultant
energy distribution differs from that of the one-

L. POLITZER AND T. E. FEUCHTWANG 3

dimensional treatment because of the appearance
of additional energy- and angle-dependent pre-
exponential factors,
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A numerical solution of the equation

amE D<1 az(Mg)> (M*— M5)C

ot v v v

governing nuclear relaxation in a paramagnetic-spin-doped insulator has been obtained. The

results are expressed in terms of

@ = Iug -2 @) 7?2 dr/b ridr

where M(0) =0, b is the so-called “diffusion barrier” and (47R%/3)~! equals the paramagnetic-
spin concentration. Sxmple analytic forms for the long-time exponential decay of m(t) are

obtained for either D or C dominating the relaxation process.

Graphical solutions for the in-

termediate regions are also obtained. The short-time nonexponential solution of m(t) is dis-

cussed.

INTRODUCTION

Bloembergen' and others? have argued that the
differential equation governing nuclear spin-lattice
relaxation in an insulator with a low concentration
of paramagnetic spins is

oM* 1 & . s- ME
o =D<¢ a2 M) = T @

where M§ is the equilibrium nuclear magnetization
and

T,(r) = (80 v, BPS(S+ 1) sin?0 cos®O[T (1 + wi 72)"1])

=TT+ WfTt, (2)
where () means angular average, D is the spin-
diffusion constant, w, is the nuclear Larmor fre-
quency, and r =0 defines the location of a para-
magnetic impurity. The boundary conditions de-
fining the solution of Eq. (1) are

Mz(,),’ 0):0; (3)

which indicates saturation of the nuclear spin



